3.61 \(\int \frac{\sqrt{d-c^2 d x^2} (a+b \cosh ^{-1}(c x))}{x^2} \, dx\)

Optimal. Leaf size=118 \[ \frac{c \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac{b c \log (x) \sqrt{d-c^2 d x^2}}{\sqrt{c x-1} \sqrt{c x+1}} \]

[Out]

-((Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x) + (c*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^2)/(2*b*Sqrt[-1
+ c*x]*Sqrt[1 + c*x]) + (b*c*Sqrt[d - c^2*d*x^2]*Log[x])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.367616, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {5798, 5738, 29, 5676} \[ \frac{c \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac{b c \log (x) \sqrt{d-c^2 d x^2}}{\sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

-((Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x) + (c*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^2)/(2*b*Sqrt[-1
+ c*x]*Sqrt[1 + c*x]) + (b*c*Sqrt[d - c^2*d*x^2]*Log[x])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5738

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x
] + (-Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)
*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Dist[(c^2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f^2*(m + 1)*Sqrt[1 + c*x]*
Sqrt[-1 + c*x]), Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]) /; FreeQ[{
a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[m, -1]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x^2} \, dx &=\frac{\sqrt{d-c^2 d x^2} \int \frac{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x^2} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac{\left (b c \sqrt{d-c^2 d x^2}\right ) \int \frac{1}{x} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (c^2 \sqrt{d-c^2 d x^2}\right ) \int \frac{a+b \cosh ^{-1}(c x)}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac{c \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b \sqrt{-1+c x} \sqrt{1+c x}}+\frac{b c \sqrt{d-c^2 d x^2} \log (x)}{\sqrt{-1+c x} \sqrt{1+c x}}\\ \end{align*}

Mathematica [A]  time = 0.432655, size = 137, normalized size = 1.16 \[ -\frac{a \sqrt{d-c^2 d x^2}}{x}+a c \sqrt{d} \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )+\frac{1}{2} b c \sqrt{d-c^2 d x^2} \left (\frac{2 \log (c x)+\cosh ^{-1}(c x)^2}{\sqrt{\frac{c x-1}{c x+1}} (c x+1)}-\frac{2 \cosh ^{-1}(c x)}{c x}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

-((a*Sqrt[d - c^2*d*x^2])/x) + a*c*Sqrt[d]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))] + (b*c*S
qrt[d - c^2*d*x^2]*((-2*ArcCosh[c*x])/(c*x) + (ArcCosh[c*x]^2 + 2*Log[c*x])/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c
*x))))/2

________________________________________________________________________________________

Maple [B]  time = 0.241, size = 286, normalized size = 2.4 \begin{align*} -{\frac{a}{dx} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-a{c}^{2}x\sqrt{-{c}^{2}d{x}^{2}+d}-{a{c}^{2}d\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{b \left ({\rm arccosh} \left (cx\right ) \right ) ^{2}c}{2}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}-{b{\rm arccosh} \left (cx\right )c\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}-{\frac{b{\rm arccosh} \left (cx\right )x{c}^{2}}{ \left ( cx+1 \right ) \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{b{\rm arccosh} \left (cx\right )}{ \left ( cx+1 \right ) \left ( cx-1 \right ) x}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{bc\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\ln \left ( \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) ^{2}+1 \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x)

[Out]

-a/d/x*(-c^2*d*x^2+d)^(3/2)-a*c^2*x*(-c^2*d*x^2+d)^(1/2)-a*c^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*
x^2+d)^(1/2))+1/2*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)^2*c-b*(-d*(c^2*x^2-1))^(1/
2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*c-b*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)/(c*x+1)/(c*x-1)*x*c^2+b*(-
d*(c^2*x^2-1))^(1/2)*arccosh(c*x)/(c*x+1)/(c*x-1)/x+b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*ln((c
*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2+1)*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} d x^{2} + d}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname{acosh}{\left (c x \right )}\right )}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c^{2} d x^{2} + d}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/x^2, x)